Q4. The base of an equilateral triangle is along the line given by 3x + 4y = 9. If a vertex of the triangle is (1, 2), then the length of a side of the triangle is:

[Main Online April 11, 2014]

(a)
$$\frac{2\sqrt{3}}{15}$$
 (b) $\frac{4\sqrt{3}}{15}$ (c) $\frac{4\sqrt{3}}{5}$ (d) $\frac{2\sqrt{3}}{5}$

Sol 4.

(b) P(1, 2)A CB 3x + 4y = 9

Shortest distance of a point (x_1, y_1) from line

$$ax + by = c \text{ is } d = \frac{\left| ax_1 + by_1 - c \right|}{\sqrt{a^2 + b^2}}$$

Now shortest distance of P (1, 2) from 3x + 4y = 9 is

$$PC = d = \left| \frac{3(1) + 4(2) - 9}{\sqrt{3^2 + 4^2}} \right| = \frac{2}{5}$$

Given that \triangle APB is an equilateral triangle Let 'a' be its side Now, In $\triangle PCB$, $(PB)^2 = (PC)^2 + (CB)^2$ (By Pythagoras theoresm)

$$a^2 = \left(\frac{2}{5}\right)^2 + \frac{a^2}{4}$$

$$a^2 - \frac{a^4}{4} = \frac{4}{25} \Rightarrow \frac{3a^2}{4} = \frac{4}{25}$$

$$a^2 = \frac{16}{75} \Rightarrow a = \sqrt{\frac{16}{75}} = \frac{4}{5\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{3}}{15}$$

:. Length of Equilateral triangle (a) = $\frac{4\sqrt{3}}{15}$